
NAG C Library Function Document

nag_dsytrf (f07mdc)

1 Purpose

nag_dsytrf (f07mdc) computes the Bunch–Kaufman factorization of a real symmetric indefinite matrix.

2 Specification

void nag_dsytrf (Nag_OrderType order, Nag_UploType uplo, Integer n, double a[],
Integer pda, Integer ipiv[], NagError *fail)

3 Description

nag_dsytrf (f07mdc) factorizes a real symmetric matrix A, using the Bunch–Kaufman diagonal pivoting
method.

A is factorized as either A ¼ PUDUTPT if uplo ¼ Nag Upper, or A ¼ PLDLTPT if
uplo ¼ Nag Lower, where P is a permutation matrix, U (or L) is a unit upper (or lower) triangular
matrix and D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks; U (or L) has
2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column interchanges are
performed to ensure numerical stability while preserving symmetry.

This method is suitable for symmetric matrices which are not known to be positive-definite. If A is in fact
positive-definite, no interchanges are performed and no 2 by 2 blocks occur in D.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is to be
factorized, as follows:

if uplo ¼ Nag Upper, the upper triangular part of A is stored and A is factorized as

PUDUTPT , where U is upper triangular;

if uplo ¼ Nag Lower, the lower triangular part of A is stored and A is factorized as

PLDLTPT , where L is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

f07 – Linear Equations (LAPACK) f07mdc

[NP3645/7] f07mdc.1

4: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the n by n symmetric indefinite matrix A. If uplo ¼ Nag Upper, the upper triangle of A
must be stored and the elements of the array below the diagonal are not referenced; if
uplo ¼ Nag Lower, the lower triangle of A must be stored and the elements of the array above the
diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by details of the block diagonal matrix D
and the multipliers used to obtain the factor U or L as specified by uplo.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda � maxð1; nÞ.

6: ipiv½dim� – Integer Output

Note: the dimension, dim, of the array ipiv must be at least maxð1; nÞ.
On exit: details of the interchanges and the block structure of D.

More precisely, if ipiv½i� 1� ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A
were interchanged with the kth row and column.

If uplo ¼ Nag Upper and ipiv½i� 2� ¼ ipiv½i� 1� ¼ �l < 0,
di�1;i�1 di;i�1

di;i�1 dii

��
is a 2 by 2 pivot

block and the ði� 1Þth row and column of A were interchanged with the lth row and column.

If uplo ¼ Nag Lower and ipiv½i� 1� ¼ ipiv½i� ¼ �m < 0,
dii diþ1;i

diþ1;i diþ1;iþ1

��
is a 2 by 2 pivot

block and the ðiþ 1Þth row and column of A were interchanged with the mth row and column.

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_SINGULAR

The block diagonal matrix D is exactly singular.

NE_ALLOC_FAIL

Memory allocation failed.

f07mdc NAG C Library Manual

f07mdc.2 [NP3645/7]

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

If uplo ¼ Nag Upper, the computed factors U and D are the exact factors of a perturbed matrix Aþ E,
where

jEj � cðnÞ�P jU j jDj jUT jPT ;

cðnÞ is a modest linear function of n, and � is the machine precision.

If uplo ¼ Nag Lower, a similar statement holds for the computed factors L and D.

8 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper or
lower triangle is stored, as specified by uplo.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U and L are stored in the corresponding columns of the array a, but additional row
interchanges must be applied to recover U or L explicitly (this is seldom necessary). If ipiv½i� 1� ¼ i, for
i ¼ 1; 2; . . . ; n (as is the case when A is positive-definite), then U or L is stored explicitly (except for its
unit diagonal elements which are equal to 1).

The total number of floating-point operations is approximately 1
3
n3.

A call to this function may be followed by calls to the functions:

nag_dsytrs (f07mec) to solve AX ¼ B;

nag_dsycon (f07mgc) to estimate the condition number of A;

nag_dsytri (f07mjc) to compute the inverse of A.

The complex analogues of this function are nag_zhetrf (f07mrc) for Hermitian matrices and nag_zsytrf
(f07nrc) for symmetric matrices.

9 Example

To compute the Bunch–Kaufman factorization of the matrix A, where

A ¼

2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06

�1:15 0:63 2:06 �1:81

1
CCA

0
BB@ :

9.1 Program Text

/* nag_dsytrf (f07mdc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>

f07 – Linear Equations (LAPACK) f07mdc

[NP3645/7] f07mdc.3

#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, n, pda;
Integer exit_status=0;
Nag_UploType uplo_enum;
Nag_MatrixType matrix;

NagError fail;
Nag_OrderType order;
/* Arrays */
char uplo[2];
Integer *ipiv=0;
double *a=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07mdc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;

#else
pda = n;

#endif
/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||

!(a = NAG_ALLOC(n * n, double)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);

if (*(unsigned char *)uplo == ’L’)
{

uplo_enum = Nag_Lower;
matrix = Nag_LowerMatrix;

}
else if (*(unsigned char *)uplo == ’U’)

{
uplo_enum = Nag_Upper;
matrix = Nag_UpperMatrix;

}
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo_enum == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");

f07mdc NAG C Library Manual

f07mdc.4 [NP3645/7]

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");
}

/* Factorize A */
f07mdc(order, uplo_enum, n, a, pda, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07mdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print factor */
x04cac(order, matrix, Nag_NonUnitDiag, n, n, a, pda,

"Details of Factorization", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print pivot indices */
Vprintf("\nIPIV\n");
for (i = 1; i <= n; ++i)

Vprintf("%11ld%s", ipiv[i-1], i%7==0 ?"\n":" ");
Vprintf("\n");

END:
if (ipiv) NAG_FREE(ipiv);
if (a) NAG_FREE(a);
return exit_status;

}

9.2 Program Data

f07mdc Example Program Data
4 :Value of N
’U’ :Value of UPLO
2.07 3.87 4.20 -1.15

-0.21 1.87 0.63
1.15 2.06

-1.81 :End of matrix A

9.3 Program Results

f07mdc Example Program Results

Details of Factorization
1 2 3 4

1 2.0700 4.2000 0.2230 0.6537
2 1.1500 0.8115 -0.5960
3 -2.5907 0.3031
4 0.4074

IPIV
-3 -3 3 4

f07 – Linear Equations (LAPACK) f07mdc

[NP3645/7] f07mdc.5 (last)

	f07mdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	a
	pda
	ipiv
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

